High-frequency asymptotics for the modified Helmholtz equation in a half-plane
نویسنده
چکیده
Based on the integral representations of the solution derived via Fokas’ transform method, the high-frequency asymptotics for the solution of the modified Helmholtz equation, in a half-plane and subject to the Dirichlet condition, is discussed. For the case of piecewise constant boundary data, full asymptotic expansions of the solution are obtained by using Watson’s lemma and the method of steepest descents for definite integrals. MSC: 35B40; 35C15; 35J05; 41A60
منابع مشابه
Nonlinear Vibration Analysis of the Beam Carrying a Moving Mass Using Modified Homotopy
In the present study, the analysis of nonlinear vibration for a simply-supported flexible beam with a constant velocity carrying a moving mass is studied. The amplitude of vibration assumed high and its deformation rate is assumed slow. Due to the high amplitude of vibrations, stretching is created in mid-plane, resulting in, the nonlinear strain-displacement relations is obtained, Thus, Nonlin...
متن کاملSound Wave Propagation in Viscous Liquid-Filled Non-Rigid Carbon Nanotube with Finite Length
In this paper, numerical results obtained and explained from an exact formula in relation to sound pressure load due to the presence of liquid inside the finite-length non-rigid carbon nanotubes (CNTs), which is coupled with the dynamic equations of motion for the CNT. To demonstrate the accuracy of this work, the obtained formula has been compared to what has been used by other research...
متن کاملUniform resolvent estimates for a non-dissipative Helmholtz equation
We study the high frequency limit for a non-dissipative Helmholtz equation. We first prove the absence of eigenvalue on the upper half-plane and close to an energy which satisfies a weak damping assumption on trapped trajectories. Then we generalize to this setting the resolvent estimates of Robert-Tamura and prove the limiting absorption principle. We finally study the semiclassical measures o...
متن کاملElzaki transform method for finding solutions to two-dimensional elasticity problems in polar coordinates formulated using Airy stress functions
In this paper, the Elzaki transform method is used for solving two-dimensional (2D) elasticity problems in plane polar coordinates. Airy stress function was used to express the stress compatibility equation as a biharmonic equation. Elzaki transform was applied with respect to the radial coordinate to a modified form of the stress compatibility equation, and the biharmonic equation simplified t...
متن کاملAxially Symmetric Vibrations of a Liquid-Filled Poroelastic Thin Cylinder Saturated with Two Immiscible Liquids Surrounded by a Liquid
This paper studies axially symmetric vibrations of a liquid-filled poroelastic thin cylinder saturated with two immiscible liquids of infinite extent that is surrounded by an inviscid elastic liquid. By considering the stress free boundaries, the frequency equation is obtained. Particular case, namely, liquid-filled poroelastic cylinder saturated with single liquid is discussed. When the waven...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014